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QUANTITATIVE FRAMEWORK OF RANDOMLY ROVING AGENTS
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Quantitative characterization of randomly roving agents in wireless sensor
networks (WSN) is studied. Above the formula simplifications, regarding the
known results, it is shown that the basic agent model is stochastically equivalent
to a similar simpler model. Then a formula for frequencies is achieved in terms of
combinatorial second kind Stirling numbers. At allows to justify the roving agents
quantitative characteristics.
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Introduction. This work, inspired by [1-3], considers roving agents’ nume-
rical characterization, challenging ad hoc pervasive and trustworthy networks.
Agents are autonomous, moving, and intelligent software structures capable to play
a sensitive role in advanced monitoring, computation and protection systems.
Intrusion detection systems (IDS) [1] are addressed particularly. They appear as
complementary mean to the ordinary cryptographic protection tools of computers
and networks. Such IDS use software agent based monitoring and data collection,
watching the inside processes of a computer, registering LOG files of application
software systems, sniffing and recording communication protocols. Watching the
whole network behavior they are better suited to warn approaching attacks and
malfunctioning. Data mining agents (DMA) and Data fusion agents (DFA) are
examples of information integration tools in networks [2]. In large networks,
moreover when its structure is not predefined such as wireless sensor networks [3]
it is natural to consider independent, randomly roving agents, requiring that they
are able to collect enough information in total, mining the necessary knowledge
about the intrusion. This framework is studied in [2], which prove formulas for the
number of DMA sufficient to monitor the given size areas of networks. The
formula received is complex and impractical because of their use of nested sums by
different parameters. Our work tends to prove simple estimates for the same
numerical characteristics of WSN.

Roving Agents Model. DMA roams around randomly in a network and
acquires environmental information. It is lightweight using simplest mining algo-
rithms. DFA is for integration of DMA set actions. DFA may act as an intrusion
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detection tool and then its power depends on information collected by DMA in
network.

Given a network N of »n nodes v,v,,..,v,. Some fixed amount of
information 3, is allocated at node v,. There are k¥ DMA a,,a,,...,v, . Each agent
visits exactly m different nodes and obtains the unique information content in each
such node. DMA pass all collected information to DFA. Denote by P, (n,m,t) the
probability that DFA contains exactly ¢ information blocks of network nodes when
k agents randomly visit m of n nodes each. The formula for P, (n,m,t) proven in

[2] looks as:
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For smaller £ formulas, given in [2], look similar. Of course, these formulas
are unobservable and simplifications or approximations are of interest. By this
same reason [2], proving the formulas, considers computer simulation to under-
stand the typical numbers of agents necessary to retrieve the required information
in network. Modifications of “exactly £’ condition in agent distribution scheme are
also important to be considered.

Coverage Characterization of Roving Agents. Given the set N ={y,,...,v, }

of nodes and S,,...,§, be k arbitrary subsets of N, of size m, m < n, visited cor-
respondingly by the £ agents. Consider a probability distribution scheme over the
N, and suppose that m-subsets S, are equiprobable and independent. Having in

total C" m-subsets the probability of one of them equals 1/C". We study the

k

probabilistic characteristics of the union | JS; and of its size. In particular, the proba-
i=1

k

Us.
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bility p, = p[

= tj that the union of those subsets contains exactly ¢ elements.

Lv,es,

A matrix 4" = {a;}, where a; :{ corresponds to collection

0, otherwise,
of subsets S,...,5; of N nodes. As each §; contains exactly m elements, each
k

Us

i=1
A, which contain at least one 1 and n—¢ columns, which don’t contain 1. The
number of % xn matrixes with m ones on each row and with exactly n—¢ columns
with no 1 is C.Q(k,m,t), where Q(k,m,t) is number of k x¢ matrixes with m
ones on each row and at least one 1 on each column.

row of 4™ contains m 1sand n—m 0s. If =t, then there are ¢ columns of
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Alternatively, let us consider the following schematic presentation of roving
agents’ distribution (see [4, 5]). Left column vertices in the Scheme 1 contain all

arrangements 7;,7,,... of k agents roving by C!" m -node-subsets (ordered collec-

tions of k& m -node-subsets).
From combinatorial perspective agents and nodes are distinguishable but

/: o N ~N m -node-subsets are considered
vurcomes of & by /m s as usual sets — different
(T, Observed node sets elements and no ordering. Total
T, number of arrangements is
T, o I sets (C,'," )k. Part of these arrange-
< T, ments covers exactly ¢ nodes.
T, . Let these be vertices L,T,,..T,.
. We want to compute the un-
known number p. Right side
\ 7, column vertices correspond to
0 all subsets of node set N and
part of these sets are of size ¢.
. 5 In our experiment node subset
\1 O(k,m,t) Sizes may take values from m
° to min(km,n) .
\_ Y, We draw an edge between

an arrangement and a node
subset, which is covered by that
arrangement. Each arrangement
is incident to exactly one edge (and subset). Each ¢-subset appears in different
arrangements and this number say Q(k,m,t), is common for all ¢ -subsets.

Scheme 1. Agent sets distribution in terms of trials and
node sets.

QO(k,m,t) can be calculated by inclusion-exclusion principle. We use the
matrix model for arrangements. First, over a & x¢ -matrix we take the whole set of
unconstrained arrangements as all matrices with m 1s on rows, then we remove
from this all arrangements, when at least 1 column is initially filled with 0 (such
matrices do not obey the conditions we require), then add arrangements with at
least 2 empty columns, etc. The formula representation of related quantities is

t—-m o
O(k.m.t)=(C" = C(CL) + G =t (CDT(CT = 2 (-1) CUC)"
i=0
We have proven
t—m o
G, 2 'Get)”
i=0
€
We receive a real simplification of formula (1). The formula received is still
complex, but it might be approximated and the applied Markov inequality may
give asymptotic estimates of f-subset probabilities. The mean value of subset size

¢t takes the form

Theorem 1. P.(n,m,t)=
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On Node Repetition Limitations in An Agent Roving Scheme. Consider
the scene of random distribution of m agents over the » WSN nodes (here we do
not consider k& agents but m agents, and each individual agent visits exactly one
node). Agents are dropped over the node set one by one, independently, and with
equal probabilities for nodes. Allocating all m agents we receive a collection of
nodes visited by agents, probably with multiple agents that visited the same node.

Total number of different allocations is #™ . Among these: 1 node allocations
number is n (all agents visit the same node); 2 node allocations, they are

Cf (2™ —2); and the larger sets are n(n—1)---(n—m+1) m-sets, when agents are
distributed in all different nodes. We need in frequencies of allocation sizes, when
at least 2 agents are allocated at the same node (sizes from 1 to m—1), or
complementary, the share of allocations with all different nodes.

One of approaches of determining typical cases in distributions is when
Markov (or Chebyshev) inequality is applied. In this way we consider a Scheme 2
similar to Scheme 1 to compute the means of number of allocated nodes in random

distribution of m agents over
Outcomes of m trials ~ Observed node sets to- the n WSN nodes.
( S gether with agent pairs
1

S A side vertices equals to nC..

2
S Edges are connecting an allo-
s cation to a node with the given
, pair of agents it contains. Si-
S Triples (node+ ilarl h
+pair of agents) milarly to the above case we
> compute that

Thus, number of right

w

N
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M(Un,m) = m
n
Apply Markov inequa-
. M
lity Pr{v,, 2¢&}< M
\I nmfZ ’ &

Take ¢ =1, then C /n is the

\_ _J upper estimate of probability
of repeating agents at nodes. If

Scheme 2. Agents distribution on WSN node sets. 2 .
C /n—>0 with n,m— oo,

then we receive that almost all allocations consist of all different agents at nodes.
Comparison of Agent Allocation Schemes. In this point we will define and
consider two basic probability distributions related to each other (Scheme 3).
* Basic distribution U, , ,,, is formed by k& independent consecutive alloca-

tions of m -node-subsets over the WSN area of n nodes. (C”)". Outcomes of

trials are ordered collections of m -subsets of WSN nodes. These collections may
cover all node subsets of sizes from m to min(km,n).
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e Second distribution U which has to be compared with the basic one

nk,m >
U, 1m introduced above, consists of & consecutive and independent stages; each
stage allocates m elements consecutively and independently over the WSN area of

n nodes. Outcomes of these trials are all 7" ordered collections of nodes. These
collections may cover all node subsets of sizes from 1 to min(km,n) .

In one individual stage of U we have m! orderings of a single allocation

nk,m

of m-subset of one step of U,;,. This is to be taken into account

comparing U, , . and U This difference can also be seen comparing the one

nk,m *

stage outcomes of U, .. and U Represent C,' of model U,, .. as

nk,m *

n! _ n(n—=1)..(n—-m+1)

. Numerator of last ratio is the counterpart of »"
m!(n—m)! m!

of model U,, .,
U, kim and U
U

and m! is the coefficient being mentioned about. Comparing

first we note that outcomes of U, , .. are part of outcomes of

nk,m >
and hence they may have larger probabilities.

nk,m >

B: Allocations by U

ok m}

A: Allocations by U

nk.m

Scheme 3. Allocations by U, ,,, and U, .

Consider the probability p; of an event, that in U, in stage ; all

nk,m >
allocated m elements are different. Then, P = p, - p, -...- p, is the probability that
in all £ stages allocated m elements are different. In different stages allocations
may intersect. Outcomes of U, , ., multiplied with this probabilities are equal to

probabilities of U, , ,, part B of intersection of outcomes. p; was estimated in

previous point as a value tending to 1 asymptotically. We may extend this
proposition to the entire value P . Formally we use the property that probability of
events union is less or equal the sum of event probabilities:

Pr{(,, 2£|g=DV (V,, 2elg=2)V..v (v, 2 €lg=k} <kPr{y, , > £} <

sm ,m

kM (V,,,)
P

Then the final condition (upper estimate) sufficient for repetition probability
tending to zero is kCi /n— 0 with n,m,k — oo. The sufficient condition for allo-

cation of all m agents in all £ consecutive stages to different nodes km*/n — 0
is naturally acceptable in WSN, which has very large nodes sets as a rule.
Final picture is: part B allocations appear in U, , , with probability P

tending to 1; relative probability distribution among the elements of B is identical
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inU,,,,adU event probability in model U, , ., is not less than in U

nk,m nk,m

multiplied by P; probabilities of z-subset allocations under the model U, , have
formulas similar to the ones for model U, , ,,, considered above.

If R(k,m,t) denotes the number of ¢-node allocations in model U then

nk,m >
the formal representation of R(k,m,t) similar to the formula for Q(k,m,t)
considered above can be achieved by the same inclusion/exclusion method:

-1 o
R(k,m,t)=t" —=C (t=1)"™ +C}(t =2)" —..+ (=D ¢ =)™ =X (-1)'C/ (t —i)™.
i=0

On this basis we formulate

. ClO(k,m,t
Theorem 2. If C’”—)O with n,m,k — o, then ”Q(m’m’)PS

n cryt
t
<GRUmD - P,

nkm

Finally, we note that R(k,m,t) has equivalent presentation in terms of

K
second kind Stirling numbers S(N,K) = % > (1)’ C{(K — j)V . Here we used the
. j:()
fact, that allocation of & consecutive and independent stages of m elements over
the WSN area of n nodes is equivalent to allocation of km elements over that
area. Note a difference between the formulas for Q(k,m,t) and R(k,m,t) — that is
summation limits. In case of R(k,m,t) formally we may add the zero term for
i=t, and then we receive R(k,m,t)=t!S(mk,t), which is the final postulation of
this paper.

Conclusion. WSN and software agent systems are important application
technique for many areas. Being hard algorithmically and complex in model level
these systems require special economy regimes, and this is concerned in knowing
the minimal requirements and maximum effect, when resource is limited. In
randomly roving agents model, which is considered above, it is shown that
appearing probabilities are equivalently presented in terms of combinatorial
Stirling numbers and due to known asymptotic formulas for these numbers [6, 7],
this allows to adopt the monitoring regime in an optimal way.
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z. L. Uypuiyul
NMuunwhwlwinpblt puthwnnn wgkinbbkph puwbwljulwb pinipugpnid

Usliwwnwitpmd ntuntdwuppyty i wiup ukiunpuyhtt gmigbpnid (WSN)
ywuwnwhwljuinptt puthwenn wgbkntbph pwbhwluwlut pinipw-qptpp: Fugh
hujinth pmtwdltpnh yupgqtgniduknhg, gnyg k wpyk), np hhdbwljut wgktnughb
unpbp hwjwiwlwbughtt dwjuppulnid hwdwpdbp b hwdwtdwh Jh wpwby
wupq unphih: Ujunithbnb unwgyl) B hwdwhwlwinipnibitph hwdwpdtp
puwtwdlikp, npntp tbpluyugywé Eu Yndphttwnnphuymyd hwjnth Uwnphnihtugh
Epljpnpn ubknh pytph dhgngny: Unhnhiigh plbpp npuybu ntunidbwuppdus B
b ipug hwdwp huynth £ wnwppbp gpwhwnwluiubph dh wdpnne swipp:

A. JI. AciansH.

KonnyecTBeHHAsi XapaKTepu3anus C1y4aiiHo 0J1y:KAAI0IIHUX ATeHTOB

B pabote uccnenoBanbl KOIMYECTBEHHBIE XapaKTEPUCTUKHU CIIydaitHO OIyx-
JIAIOIIMX areHTOB B OecrpoBOHBIX ceHCOpHBIX ceTsax (WSN). Tlomumo ymporie-
HUM QopMys, M3BECTHBIX M3 MyONUKAIMH, MOKa3aHa SKBHBAJEHTHOCTh 0a30BOMH
areHTHOW Mojenu Ooyiee TMPOCTOM MOJETH Ha BEPOSTHOCTHOM YypoBHe. Jlanee
BBIBEJICHbI SKBUBAJICHTHBIE (DOPMYIIBI JUIS YaCTOT B TEPMHHAX W3BECTHBIX KOMOHU-
HaTOpHBIX yrcen CtupiauHra Broporo poaa. Uucina CTHpIMHIa XOpPOIIO U3yYEeHbI U
JUISL HUX M3BECTEH LENbIN PA Pa3IMYHBIX OILIEHOK.



