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Quantitative characterization of randomly roving agents in wireless sensor 
networks (WSN) is studied. Above the formula simplifications, regarding the 
known results, it is shown that the basic agent model is stochastically equivalent 
to a similar simpler model. Then a formula for frequencies is achieved in terms of 
combinatorial second kind Stirling numbers. At allows to justify the roving agents 
quantitative characteristics.  
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Introduction. This work, inspired by [1–3], considers roving agents’ nume-
rical characterization, challenging ad hoc pervasive and trustworthy networks. 
Agents are autonomous, moving, and intelligent software structures capable to play 
a sensitive role in advanced monitoring, computation and protection systems. 
Intrusion detection systems (IDS) [1] are addressed particularly. They appear as 
complementary mean to the ordinary cryptographic protection tools of computers 
and networks. Such IDS use software agent based monitoring and data collection, 
watching the inside processes of a computer, registering LOG files of application 
software systems, sniffing and recording communication protocols. Watching the 
whole network behavior they are better suited to warn approaching attacks and 
malfunctioning. Data mining agents (DMA) and Data fusion agents (DFA) are 
examples of information integration tools in networks [2]. In large networks, 
moreover when its structure is not predefined such as wireless sensor networks [3] 
it is natural to consider independent, randomly roving agents, requiring that they 
are able to collect enough information in total, mining the necessary knowledge 
about the intrusion. This framework is studied in [2], which prove formulas for the 
number of DMA sufficient to monitor the given size areas of networks. The 
formula received is complex and impractical because of their use of nested sums by 
different parameters. Our work tends to prove simple estimates for the same 
numerical characteristics of WSN. 

Roving Agents Model. DMA roams around randomly in a network and 
acquires environmental information. It is lightweight using simplest mining algo-
rithms. DFA is for integration of DMA set actions. DFA may act as an intrusion 
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detection tool and then its power depends on information collected by DMA in 
network.  

Given a network N  of n  nodes 1 2, ,..., nv v v . Some fixed amount of 
information i  is allocated at node iv . There are k  DMA 1 2, ,..., ka a v . Each agent 
visits exactly m  different nodes and obtains the unique information content in each 
such node. DMA pass all collected information to DFA. Denote by ( , , )kP n m t  the 
probability that DFA contains exactly t  information blocks of network nodes when 
k  agents randomly visit m  of n  nodes each. The formula for ( , , )kP n m t  proven in 
[2] looks as: 
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For smaller k  formulas, given in [2], look similar. Of course, these formulas 
are unobservable and simplifications or approximations are of interest. By this 
same reason [2], proving the formulas, considers computer simulation to under-
stand the typical numbers of agents necessary to retrieve the required information 
in network. Modifications of “exactly t” condition in agent distribution scheme are 
also important to be considered.  

Coverage Characterization of Roving Agents. Given the set 1{ ,..., }nN v v  
of nodes and 1,..., kS S  be k  arbitrary subsets of N , of size nmm , , visited cor-
respondingly by the k  agents. Consider a probability distribution scheme over the 
N , and suppose that m -subsets jS  are equiprobable and independent. Having in 

total m
nC  m -subsets the probability of one of them equals 1 / m
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 corresponds to collection 

of subsets 1,..., kS S  of N  nodes. As each jS  contains exactly m  elements, each 

row of kxnA  contains m  1s and n m  0s. If 
1

k

i
i

S t
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 , then there are t columns of 

A , which contain at least one 1 and n t  columns, which don’t contain 1. The 
number of k n  matrixes with m ones on each row and with exactly n t  columns 
with no 1 is ( , , )t

nC Q k m t , where ( , , )Q k m t  is number of k t  matrixes with m  
ones on each row and at least one 1 on each column.  
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Alternatively, let us consider the following schematic presentation of roving 
agents’ distribution (see [4, 5]). Left column vertices in the Scheme 1 contain all 
arrangements 1 2, ,...T T  of k  agents roving by m

nC m -node-subsets (ordered collec-
tions of k m -node-subsets).  

From combinatorial perspective agents and nodes are distinguishable but  
m -node-subsets are considered 
as usual sets – different 
elements and no ordering. Total 
number of arrangements is 

 km
nC . Part of these arrange-

ments covers exactly t  nodes. 
Let these be vertices 1 2, ,..., pT T T . 
We want to compute the un-
known number p . Right side 
column vertices correspond to 
all subsets of node set N  and 
part of these sets are of size t . 
In our experiment node subset 
sizes may take values from m  
to min( , )km n . 

We draw an edge between 
an arrangement and a node 
subset, which is covered by that 
arrangement. Each arrangement 

is incident to exactly one edge (and subset). Each t -subset appears in different 
arrangements and this number say ( , , )Q k m t , is common for all t -subsets. 

( , , )Q k m t  can be calculated by inclusion-exclusion principle. We use the 
matrix model for arrangements. First, over a k t -matrix we take the whole set of 
unconstrained arrangements as all matrices with m  1s on rows, then we remove 
from this all arrangements, when at least 1 column is initially filled with 0 (such 
matrices do not obey the conditions we require), then add arrangements with at 
least 2 empty columns, etc. The formula representation of related quantities is 
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We have proven 
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We receive a real simplification of formula (1). The formula received is still 
complex, but it might be approximated and the applied Markov inequality may 
give asymptotic estimates of t -subset probabilities. The mean value of subset size 
t  takes the form 
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Scheme 1. Agent sets distribution in terms of trials and  
node sets. 
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On Node Repetition Limitations in An Agent Roving Scheme. Consider 
the scene of random distribution of m  agents over the n  WSN nodes (here we do 
not consider k  agents but m  agents, and each individual agent visits exactly one 
node). Agents are dropped over the node set one by one, independently, and with 
equal probabilities for nodes. Allocating all m  agents we receive a collection of 
nodes visited by agents, probably with multiple agents that visited the same node.  

Total number of different allocations is mn . Among these: 1 node allocations 
number is n  (all agents visit the same node); 2 node allocations, they are 

2 (2 2)m
nC  ; and the larger sets are ( 1) ( 1)n n n m    m -sets, when agents are 

distributed in all different nodes. We need in frequencies of allocation sizes, when 
at least 2 agents are allocated at the same node (sizes from 1 to 1m ), or 
complementary, the share of allocations with all different nodes.  

One of approaches of determining typical cases in distributions is when 
Markov (or Chebyshev) inequality is applied. In this way we consider a Scheme 2 
similar to Scheme 1 to compute the means of number of allocated nodes in random 

distribution  of  m  agents over  
the  n   WSN  nodes. 

Thus, number of right 
side vertices equals to 2

mnC . 
Edges are connecting an allo-
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milarly to the above case we 
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Take 1  , then 2 /mC n  is the 
upper estimate of probability 
of repeating agents at nodes. If 

2 / 0mC n   with ,n m  , 
then we receive that almost all allocations consist of all different agents at nodes. 

Comparison of Agent Allocation Schemes. In this point we will define and 
consider two basic probability distributions related to each other (Scheme 3).  

  Basic distribution , ,{ }n k mU  is formed by k  independent consecutive alloca-

tions of m -node-subsets over the WSN area of n  nodes. ( )m k
nC . Outcomes of 

trials are ordered collections of m -subsets of WSN nodes. These collections may 
cover all node subsets of sizes from m  to min( , )km n .  

Scheme 2. Agents distribution on WSN node sets. 
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  Second distribution , ,n k mU , which has to be compared with the basic one 

, ,{ }n k mU  introduced above, consists of  k  consecutive and independent stages; each 
stage allocates m  elements consecutively and independently over the WSN area of 
n  nodes. Outcomes of these trials are all kmn  ordered collections of nodes. These 
collections may cover all node subsets of sizes from 1 to min( , )km n .  

In one individual stage of , ,n k mU  we have !m  orderings of a single allocation 
of  m -subset  of  one  step  of  , ,{ }n k mU .  This  is  to  be  taken  into  account 
comparing , ,{ }n k mU  and , ,n k mU . This difference can also be seen comparing the one 

stage outcomes of , ,{ }n k mU  and , ,n k mU . Represent m
nC  of model , ,{ }n k mU  as 
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n n n n m
m n m m

  



. Numerator of last ratio is the counterpart of mn  

of model , ,n k mU , and !m  is the coefficient being mentioned about. Comparing 

, ,{ }n k mU  and , ,n k mU , first we note that outcomes of  , ,{ }n k mU  are part of outcomes of  

, ,n k mU , and hence they may have larger probabilities. 
 

 

                 B: Allocations   by  , ,{ }n k mU  

        A: Allocations by , ,n k mU  

 
 

 
 

Scheme 3. Allocations by , ,{ }n k mU  and , ,n k mU . 
 

Consider the probability jp  of an event, that in , ,n k mU , in stage j  all 
allocated m  elements are different. Then, 1 2 ... kP p p p     is the probability that 
in all k  stages allocated m  elements are different. In different stages allocations 
may intersect. Outcomes of  , ,{ }n k mU  multiplied with this probabilities are equal to 
probabilities of , ,n k mU , part B of intersection of outcomes. jp  was estimated in 
previous point as a value tending to 1 asymptotically. We may extend this 
proposition to the entire value P . Formally we use the property that probability  of 
events union is less or equal the sum of event probabilities: 

.
, , , ,

( )Pr{( 1) ( 2) ... ( )} Pr{ } .n m
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Then the final condition (upper estimate) sufficient for repetition probability 
tending to zero is 2 / 0mkC n   with , ,n m k  . The sufficient condition for allo-
cation of all m  agents in all k  consecutive stages to different nodes 2 / 0km n   
is naturally acceptable in WSN, which has very large nodes sets as a rule.  

Final picture is: part B allocations appear in , ,n k mU  with probability P 
tending to 1; relative probability distribution among the elements of B is identical 
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in , ,{ }n k mU  and , ,n k mU ; event probability in model , ,{ }n k mU  is not less than in , ,n k mU  

multiplied by P; probabilities of t-subset allocations under the model mknU ,,  have 
formulas similar to the ones for model , ,{ }n k mU  considered above. 

If ( , , )R k m t  denotes the number of t -node allocations in model , ,n k mU , then 
the formal representation of ( , , )R k m t  similar to the formula for ( , , )Q k m t  
considered above can be achieved by the same inclusion/exclusion method:  
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On this basis we formulate 
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Finally, we note that ( , , )R k m t  has equivalent presentation in terms of 

second kind Stirling numbers
0

1( , ) ( 1) ( )
!

K
j j N

K
j

S N K C K j
K 

   . Here we used the 

fact, that allocation of k  consecutive and independent stages of m  elements over 
the WSN area of n  nodes is equivalent to allocation of km  elements over that 
area. Note a difference between the formulas for ( , , )Q k m t  and ( , , )R k m t  – that is 
summation limits. In case of ( , , )R k m t  formally we may add the zero term for 
i t , and then we receive  ( , , ) ! ( , )R k m t t S mk t , which is the final postulation of 
this paper. 

Conclusion. WSN and software agent systems are important application 
technique for many areas. Being hard algorithmically and complex in model level 
these systems require special economy regimes, and this is concerned in knowing 
the minimal requirements and maximum effect, when resource is limited. In 
randomly roving agents model, which is considered above, it is shown that 
appearing probabilities are equivalently presented in terms of combinatorial 
Stirling numbers and due to known asymptotic formulas for these numbers [6, 7], 
this allows to adopt the monitoring regime in an optimal way. 
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Հ. Լ. Ասլանյան 
 

Պատահականորեն թափառող ագենտների քանակական բնութագրում 

Աշխատանքում ուսումնասիրվել են անլար սենսորային ցանցերում (WSN) 
պատահականորեն թափառող ագենտների քանակական բնութա-գրերը: Բացի 
հայտնի բանաձևերի պարզեցումներից, ցույց է տրվել, որ հիմնական ագենտային 
մոդելը հավանականային մակարդակում համարժեք է համանման մի առավել 
պարզ մոդելի: Այնուհետև ստացվել են հաճախականությունների համարժեք 
բանաձևեր, որոնք ներկայացված են կոմբինատորիկայում հայտնի Ստիռլինգի 
երկրորդ սեռի թվերի միջոցով: Ստիռլինգի թվերը խորապես ուսումնասիրված են 
և նրանց համար հայտնի է տարբեր գնահատականների մի ամբողջ շարք: 

 

А. Л. Асланян. 
 
Количественная xарактеризация случайно блуждающиx агентов 

   

В работе исследованы количественные xарактеристики случайно блуж-
дающиx агентов в беспроводныx сенсорныx сетяx (WSN). Помимо упроще-
ний формул, известныx из публикаций, показана эквивалентность базовой 
агентной модели более простой модели на вероятностном уровне. Далее 
выведены эквивалентные формулы для частот в терминаx известныx комби-
наторныx чисел Стирлинга второго рода. Числа Стирлинга xорошо изучены и 
для ниx известен целый ряд различных оценок.  

 

 


